
STATISTICAL MECHANICS Problems & Exercises Exercise 6

Exercise 1 Dilute polymer solutions under "good solvent" conditions

At this point you should be familiar with the basic statistical mechanics of polymers. Consider once
again a dilute polymer solution, where each polymer is represented by a fully flexible linear chain made
of spherical monomers. In the last laboratory session we derived the configurational entropy of such an
ideal chain as:

Sid(R) = S0 + kB lnP(R) = S0 −
3kB

2
R2

b2N
(1)

Consider now increasing the temperature beyond the θ-point, so that the repulsive interactions between
the monomers of the chain overcomes (on average) the attractive interactions. This kind of unbalance
between positive and negative interactions leads to a swelling of the coil which is equivalent with what is
observed in good solvent conditions. In this exercise, you will rigorously study the behaviour of a dilute
polymer solution in such a good solvent (high temperature) regime. In particular, you will be able to
prove that, in such a limit, the Flory exponent increases beyond the ideal chain value up to ν = 3/5.

Going beyond the ideal chain limit requires one to compute the portion of free energy that is connected
with the interaction between the monomers. Since the polymer is now in an expanded coil configuration,
we can approximate the interaction free energy Aint as a series of increasing powers of the average density
of monomers ρ. Note that this procedure is reminiscent of the virial expansion of the free energy of a real
gas beyond the ideal gas state. At the first order in ρ, we have

Aint = kBTNρB2(T) (2)

As you should have learned during the lecture, B2(T) is the second virial coefficient, defined as

B2(T) = 2π
∫∞

0
dr r2

[
1 − e−βv(r)

]
(3)

with v(r) the inter-monomer potential and g(r) the radial distribution function of the monomers.

(a) Assuming that the repulsion between monomers is described by hard-sphere-like interactions, with
the hard-sphere diameter corresponding to the average bond distance b, compute the second virial
coefficient B2(T). How can you interpret the result you found in terms of going beyond an ideal
polymer condition?

(b) If R represents the end-to-end distance, then we can assume that the polymer is enclosed in a
volume V = cR3, with c a constant. Write down the total free energy of the polymer as a function
of R.

(c) Find the gyration radius Rg as the optimal end-to-end distance value which minimizes the free-
energy of the polymer. What is the Flory exponent?

(d) How the previous results would change if the interaction between the monomers was described
by a softer repulsion potential? And how "soft" could it possibly be to guarantee the asymptotic
convergence of the virial expansion?
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Exercise 2 Concentrated polymer solutions and Flory’s conjecture

This exercise involves more advanced concepts that are not covered during lectures. Give it a go if you are curious,
but do not worry too much if you find it too hard.

In this exercise you will use some fundamental concepts of liquid-state theory to study the properties
of a very concentrated polymer solution, or polymer melt, as represented by the figure below.

In these circumstances, the polymer identity is lost, meaning that one can treat on equal footing the
interactions between monomers belonging to the same polymer chain and to different polymer chains.
In simple liquids, increasing the concentration usually corresponds to an enhancement of the short-range
interactions between the system particles, requiring a refined description of the interaction free-energy.
Although this is definitely true at the local scale, it turns out that a macroscopic description of a polymer
melt is surprisingly pretty close to the one of an ideal chain. Indeed, one can assume that the swelling of a
polymer due to the repulsive interactions of the monomers within a chain are screened by the interactions
with monomers of the neighbouring chains. This hypothesis takes the name of Flory’s conjecture.

At the simplest level of theory, one can assume a Gaussian repulsive potential between any two
monomers of the melt, i.e.,

v(r) ∼ exp

[
−

(
r

R0

)2
]

(4)

with r the distance between the monomers and R0 the characteristic interaction length. In this picture, the
Flory’s hypothesis about the increase of the screening of the interactions with the concentration implies
assuming the following limit ρR3

0 → ∞. In other words, the characteristic interaction length scale R0 is
assumed to be much larger than the typical distance between two monomers of the melt. This condition
identifies the perfect situation for a mean-field treatment of the problem, where the system is described
through its collective (macroscopic) behaviour.

Our objective is to derive the pressure P of the melt within a mean-field treatment. As a starting point,
consider that the isothermal compressibility of a liquid χT is related to the macroscopic (k → 0) limit of
the structure factor S(k) of the system as

ρkBTχT = kBT

(
∂ρ

∂P

)
T

= 1+ ρ
∫
dr [g(r) − 1] = 1+ ρ

∫
dr h(r) = lim

k→0

[
1 + ρĥ(k)

]
= lim
k→0

S(k) = S(0), (5)

with g(r) the usual radial distribution function and h(r) = g(r) − 1.

(a) Derive a formal expression for the pressure of the polymer melt as a function of S(0).

(b) A fundamental equation of liquid-state theory is the Ornstein-Zernike (OZ) equation. Given r =

|r − r ′|, it reads as follows

h(r) = c(r) + ρ

∫
dr ′′c(|r − r ′′|)h(|r ′′ − r ′|), (6)

Cont.
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that is, the total correlation h(r) between two monomers is decomposed in a direct contribution
c(r) and an indirect contribution (the convolution integral) that brings information from the other
surrounding monomers. Remembering the convolution property of Fourier transforms, and that
S(k) = 1 + ρĥ(k), use the OZ equation to write the structure factor S(k) as a function of ĉ(k) only,
with ĉ(k) the Fourier transform of the direct correlation function c(r).

(c) In a mean-field treatment, where R0 is much larger than the typical inter-monomer distance, only
the asymptotic behaviour of the direct correlation function c(r) can be considered. Bringing infor-
mation on the direct correlation between two particles, the asymptotic behaviour of c(r) is directly
related to the inter-monomer potential, i.e.,

lim
r→∞ c(r) = −βv(r). (7)

Update the structure factor definition of the previous question based on this knowledge and write
a final expression for the pressure of the polymer melt as a function of v̂(0). Optional: Compute v̂(0)
explicitly and write the pressure as a function of R0.

(d) Can you find an analogy with the virial equation of state? Justify your answer based on the general
definition of the second virial coefficient as defined in Eq. (3) of the previous exercise.

The End.


